МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА УНИВЕРСИТЕТ "ПРОФ. Д-Р АСЕН ЗЛАТАРОВ"-БУРГАС

Маг. инж. Цветалина Христова Ибрева

СИНТЕЗ, СВОЙСТВА И ПРИЛОЖЕНИЕ НА ВИЛЕМИТОВИ И ШПИНЕЛНИ КЕРАМИЧНИ ПИГМЕНТИ

научна специалност 02.10.12 Технология на силикатите, свързващите вещества и труднотопимите неметални материали

ΑΒΤΟΡΕΦΕΡΑΤ

на дисертационен труд, представен за присъждане на образователна и научна степен "Доктор"

БУРГАС, 2022 ГОДИНА

Дисертационният труд съдържа 144 страници, включително 76 фигури и 28 таблици.

Библиографията съдържа 162 източника.

Материалите по защитата са на разположение на интересуващите се в катедра "Химични технологии"

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА УНИВЕРСИТЕТ "ПРОФ. Д-Р АСЕН ЗЛАТАРОВ"-БУРГАС

Маг. инж. Цветалина Христова Ибрева

СИНТЕЗ, СВОЙСТВА И ПРИЛОЖЕНИЕ НА ВИЛЕМИТОВИ И ШПИНЕЛНИ КЕРАМИЧНИ ПИГМЕНТИ

ΑΒΤΟΡΕΦΕΡΑΤ

на дисертационен труд, представен за присъждане на образователна и научна степен "Доктор"

Научни ръководители:

Проф. д-р Ирена Марковска Доц. д-р Цветан Димитров

БУРГАС, 2022 ГОДИНА

въведение

Керамичното производство е едно от най-древните производства и продуктите му са тясно свързани с ежедневието на хората. Основен проблем пред производителите на различни видове керамични изделия е подобряване на качеството и разнообразяване асортимента на изделията. Това може да се постигне чрез разширяване цветовата гама на глазурите и масите, което от своя страна е свързано с разработването и производството на керамични пигменти. Във връзка с това през последните години нараства потребността от глазури и пигменти с високи технически показатели и естетическо въздействие. С развитието на техниката и химията е постигнат голям успех в областта на оцветяването на керамичните изделия.

Първоначално като пигменти са били използвани природни оцветени минерали и руди, съдържащи Со, Fe, Mn, Cr, Cu и др., но поради постоянни и значителни колебания в химичния им състав те понастоящем почти не се използват. Днес намират приложение пигменти, които са изкуствено оцветени минерали, получени най-често чрез твърдофазни реакции.

Керамичните пигменти са неорганични, оцветени финодисперсни прахове, които добавени към дадена среда, ѝ придават съответен цвят и променят някои нейни свойства. Освен оцветяваща способност, керамичните пигменти притежават устойчивост на: атмосферни и химически въздействия; високи температури; разлагащото действие на силикатни стопилки и действието на светлината.

Тези цветни неорганични вещества са с висок коефициент на пречупване на светлината, неразтворими във вода, органични разтворители и свързващи материали, но имат способността да се диспергират в тях като ги оцветяват с определен цвят.

Особен интерес както от научна, така и от приложна гледна точка представлява получаването на керамични пигменти по зол-гелната технология. Продуктите, които се получават по този метод са с много висока чистота и добра хомогенност.

Едни от сравнително най-новите и перспективни керамични пигменти са тези, получени на основа вилемит и шпинел, в кристалната решетка, на които се внедряват цветни хромофорни йони. Освен висока оцветяваща способност тези пигменти притежават и висока температурна устойчивост, неразтворимост в силикатни стопилки и висок коефициент на отражение.

Основно предизвикателство в настоящата дисертационна работа беше да се синтезират вилемитови и шпинелни пигменти чрез твърдофазно спичане и по золгел медода и да се извършат полупромишлени експерименти по приложимостта им в глазури за керамични плочки, използвани в завод "Хан Омуртаг", гр. Шумен.

І. ЦЕЛ НА ИЗСЛЕДВАНИЯТА И ПОСТАНОВКА НА ЗАДАЧИТЕ

Целта на изследванията в настоящия дисертационен труд е да се синтезират керамични пигменти с основна минерална фаза – вилемит или шпинел с участието на различни хромофорни елементи като се изследват техните свойства и възможности за практическо приложение.

За постигане на тази цел бяха формулирани следните основни задачи на дисертационния труд:

✤ Синтезиране и изследване свойствата на вилемитови и шпинелни керамични пигменти с участието на различни хромофорни йони: Fe³⁺, Mn²⁺, Co²⁺ и Ni²⁺;

✤ Прилагане на класическия метод на твърдофазно спичане и зол-гел технологията за синтез на пигментите и сравнителното им изследване;

• Използване на чисти и отпъдъчни суровини при синтеза на пигментите;

 ✤ Изследване ролята на хромофорните йони върху синтеза на основната минерална фаза – вилемит или шпинел;

✤ Изучаване на фазовия състав и установяване на оптималните температури за синтез на пигментите;

• Използване на различни минерализатори при синтеза на пигментите за понижаване на температурата на синтез и облекчаване образуването на основната фаза;

• Изучаване свойствата на пигментите чрез прилагане на рентгенофазов анализ, инфрачервена спектроскопия, електронна микроскопия, електронен парамагнитен резонанс, мьосбауерова спектроскопия и определяне на цвета чрез спектрален фотометър;

✤ Изучаване на условията за прилагане на пигментите в глазури за облицовъчни плочки.

II. РЕЗУЛТАТИ И ОБСЪЖДАНЕ

1. СИНТЕЗ НА ВИЛЕМИТОВИ КЕРАМИЧНИ ПИГМЕНТИ

1.1. Състави и суровини за синтез на вилемитови пигментите

За получаването на вилемитови керамични пигменти на базата на предварителни изследвания и анализ на литературните данни са уточнени следните състави:

xCoO.(2-x)ZnO.SiO₂; xNiO.(2-x)ZnO.SiO₂; xMnO.(2-x).ZnO.SiO₂;

хFeO.(2-х)ZnO.SiO₂, където х= 0,125; 0,250; 0,375; 0,50; 0,625; 0,75; 0,875 и 1,00.

При синтеза на пигментите е използван минерализатор NaF за намаляване температурата на синтеза и ускоряване процесите на образуване на новата фаза. Материалите използвани за синтеза са Co₃O₄, NiO, MnO₂, Fe₂O₃, ZnO, SiO₂.nH₂O и NaF.

1.2. Технологии за синтез на вилемитовите пигментите

1.2.1. Синтез по метода на твърдофазно спичане

Пробите се подлагат на термична обработка при температури: 800°С, 900°С, 1000°С и 1100°С и 1200°С с изотермична задръжка 2 часа.

1.2.2. Синтез по зол-гелната технология

Пробите се подлагат на термична обработка при температури: 600°С, 700°С, 800°С, 900°С, 1000°С и 1100°С с изотермична задръжка 4 часа.

1.3. Анализ на синтезираните вилемитови пигменти

1.3.1. Рентгенофазов анализ (РФА)

На Фиг. 1. са представени рентгенограмите на пигментите с различна концентрация на CoO, изпечени при 1000°С. Изчислените размери на кристалната решетка варират в близки граници между $80\div100$ nm. Параметрите на решетката (Таблица 1.) не показват значителни разлики, дължащи се на заместването на Zn с Со поради близките радиуси на двата йона в тетраедричната координация (Zn²⁺ 0,60Å, Co²⁺ 0,58Å).

Фиг.1. Рентгенограма на цялата серия синтезирани вилемитови пигменти в системата CoO.ZnO.SiO₂ при 1000°C

Таблица 1. Параметри на елементарната клетка на синтезираните Со-вилемитови керамични пигменти при 1000°С

N⁰	Състав	a (Å)	c (Å)	V (Å^3)
1.	0,125CoO.1,875ZnO.SiO ₂	13,934(5)	9,338(3)	1570(1)
2.	0,250CoO.1,750ZnO.SiO ₂	13,940(4)	9,337(2)	1571(1)
3.	0,375CoO.1,625ZnO.SiO ₂	13,940(4)	9,329(2)	1570(1)
4.	0,500CoO.1,500ZnO.SiO ₂	13,942(5)	9,329(2)	1570(2)
5.	0,625CoO.1,375ZnO.SiO ₂	13,941(5)	9,329(2)	1570(2)
6.	0,750CoO.1,250ZnO.SiO ₂	13,925(3)	9,331(2)	1567(1)
7.	0,875CoO.1,125ZnO.SiO ₂	13,943(5)	9,328(3)	1570(1)
8.	1,000CoO.1,000ZnO.SiO ₂	13,942(4)	9,330(2)	1570(1)
9.	(Zn, Co) ₂ SiO ₄ PDF 46-1316	13,950	9,336	X

1.3.2. Електронен парамагнитен резонанс (ЕПР)

ЕПР спектрите на проба CoO.ZnO.SiO₂, регистрирани при 295К (Фиг. 2.), показват идентични, широки и асиметрични сигнали, характеризиращи се с ефективен g~2,6 и ширина на линията АН_{рр}~270mT. На същата фигура е показана температурната зависимост на ЕПР-спектъра на проба 1 – с понижаване на температурата се наблюдава изместване на сигнала към по-слабо поле, забелязва се засилване асиметричността и нарастване ширината на сигнала. Характерната форма на наблюдавания сигнал и температурната му зависимост са указание за съществуване на суперпарамагнетизъм. Причина за наличие на суперпарамагнитни взаимодействия в изследваните проби са наноразмерни области. съдържащи частици Со²-О, свързани чрез обменни магнитни взаимодействия.

Фиг. 2. ЕПР на проба със състав CoO.ZnO.SiO₂

Фиг. 3. ЕПР спектър на проба 0,5MnO.1,5ZnO.SiO₂ при 295К (черна линия), 210К (синя линя) и 120К (червена линия)

Пробата, съдържаща Mn²⁺ йони беше измерена в температурния интервал 120÷295К. Наблюдава се симетричен сигнал с Лоренцова форма в целия интервал на измерване. Ширината на линията слабо нараства с понижаване на температурата от 43,4÷46,6mT. G-факторът остава почти без промяна от 2,02583 при 295К÷2,02691 при 120К.

Сигналът е характерен за Mn²⁺ йони, свързани чрез обменни магнитни взаимодействия.

Въз основа на ЕПР параметрите и тяхната температурна зависимост, може да се заключи, че наблюдаваният основен сигнал, както и частично разрешените сигнали при по-слаби магнитни полета, са свързани с ефективни обменни магнитни взаимодействия между железни йони. Тези взаимодействия се засилват с понижаване на температурата, а в интервала 350÷400К престават да действат. Появата на слабо асиметричен сигнал при температури на измерване 460 и 490 К се дължи на парамагнитни железни йони.

1.3.3. Мьосбауерова спектроскопия

Експерименталните Мьосбауерови спектри на изходните образци представляват дублети. Резултатите от обработката на спектрите са представени в Таблица 2.

Слатар	Varmanaumu	Δ	Δ	В,	Γexp	G
Състав	компоненти	mm/s	mm/s	Т	mm/s	%
1(0,25FeO.1,75ZnO.SiO ₂)	Db-Fe ³⁺ _{octa} ,	0.26	0.25		0.21	100
1414-181	ZnFe ₂ O ₄	0,30	0,33	-	0,31	100
2(0,5FeO.1,5ZnO.SiO ₂)	Db-Fe ³⁺ _{octa} ,	0.27	0.25		0.22	100
1416-181	ZnFe ₂ O ₄	0,57	0,55	-	0,32	100

Таблица 2. Мьосбауерови параметри на изследваните образци

Получените свръхфинни параметри на дублетите на двата образеца практически са идентични. Стойностите на изомерно отместване (0,36÷0,37mm/s) са типични за Fe³⁺ в октаедрично кислородно обкръжение. Сравнително ниските стойности за квадруполно разцепване предполагат за наличие на относително симетрично електростатично поле около железните ядра, както е в кристални фази с висока симетрия (напр. кубична структура). Стойностите на изчислените свъхфини параметри на дублетите отговарят на ZnFe2O4, което е и в съгласие с предоставените данни от рентгенофазовия анализ.

1.3.4 Спектрофотометрично измерване на цвета

Резултатите от определените цветови параметри на синтезираните пигменти са представени в Таблици 3÷6.

Пигмент - 1000°С	Цвят	L*	a*	b*
0,125.CoO.1,875.ZnO.SiO ₂		45,55	2,33	-45,25
0,250.CoO.1,750.ZnO.SiO ₂		46,93	6,52	-48,26
0,375.CoO.1,625.ZnO.SiO ₂		37,56	13,18	-52,85
0,500.CoO.1,500.ZnO.SiO ₂		36,09	9,68	-47,22
0,625.CoO.1,375.ZnO.SiO ₂		32,73	8,75	-44,42
0,750.CoO.1.250.ZnO.SiO ₂		30,56	5,35	-33,10
0,875.CoO.1,125.ZnO.SiO ₂		30,44	3,65	-28,27

Таблица 3. Цветови характеристики на синтезираните Со-вилемитови пигменти при 1000°С

Таблица 4. Цветови характеристики на синтезираните Ni-вилемитови пигменти при 1000°С

N⁰	Composition	Colour	L*	a *	b *
1	0,125NiO.1,875ZnO.SiO ₂		67.1	-9,84	-21,18
2	0,25NiO.1,75ZnO.SiO ₂		60.8	-10,5	-22,47
3	0,375NiO.1,625ZnO.SiO ₂		58,2	-12,4	-17,54
4	0,5NiO.1,5ZnO.SiO ₂		53,5	-12,5	-13,78
5	0,625NiO.1,375ZnO.SiO ₂		52,0	-12,65	-8,49
6	0,75NiO.1,25ZnO.SiO ₂		50,9	-12,45	-6,75
7	0,875NiO.1,125ZnO.SiO ₂		49,8	-10,45	-5,17
8	1,0NiO.1,0ZnO.SiO ₂		47,2	-9,01	-1,94

Пигмент	Цвят	L*	a*	b*
0,125.MnO.1,875.ZnO.SiO ₂		77,08	4,85	12,70
0,250.MnO.1,750.ZnO.SiO ₂		64,94	8,60	20,39
0,375.MnO.1,625.ZnO.SiO ₂		51,49	11,60	22,89
0,500.MnO.1,500.ZnO.SiO ₂		54,74	10,71	17,05
0,625.MnO.1,375.ZnO.SiO ₂		49,65	10,10	16,78
0,750.MnO.1.250.ZnO.SiO ₂		42,42	9,87	15,82
0,875.MnO.1,125.ZnO.SiO ₂		38,19	9,77	15,66
1,00.MnO.1,00.ZnO.SiO ₂		35,72	9,02	15,17

Таблица 5. Цветови характеристики на синтезираните Мп-вилемитови пигменти при 1000°С

Таблица 6. Цветови характеристики на синтезираните Fe-вилемитови пигменти при различни температури

Пигмент	Цвят	L*	a*	b*
0,25.FeO.1,75.ZnO.SiO ₂ -900°C		50,58	24,83	39,72
0,25.FeO.1,75.ZnO.SiO ₂ -1000°C		48,29	25,68	34,73
0,25.FeO.1,75.ZnO.SiO ₂ -1100°C		46,08	28,76	31,38
0,25.FeO.1,75.ZnO.SiO ₂ -1200°C		43,49	13,92	21,89
0,50.FeO.1,50.ZnO.SiO ₂ -900°C		48,76	20,36	35,27
0,50.FeO.1,50.ZnO.SiO ₂ -1000°C		45,35	22,67	29,65
0,50.FeO.1,50.ZnO.SiO ₂ -1100°C		42,78	24,73	25,05
0,50.FeO.1,50.ZnO.SiO ₂ -1200°C		41,16	16,39	21,11

От представените резултати се вижда, че с увеличаване на температурата на изпичане се наблюдава:

➢ В системата CoO.ZnO.SiO₂ са получени тъмно-сини пигменти. С увеличаване температурата на изпичане на пигмента се наблюдава повишаване на параметъра L* и намаляване на координатите +a* и -b*;

➢ В системата NiO.ZnO.SiO₂ са получени сини пигменти. С увеличаване температурата на изпичане на пигмента се наблюдава намаляване на параметъра L*, увеличаване на цветовата координата -а* и намаляване на -b*;

➢ В системата MnO.ZnO.SiO₂ са получени кафяви пигменти. С увеличаване температурата на изпичане на пигмента се наблюдава намаляване на трите параметъра: L*, +a* и +b*;

➢ В системата FeO.ZnO.SiO₂ са получени кафяви пигменти. С увеличаване температурата на изпичане на пигмента се наблюдава намаляване на параметъра L* и увеличаване на цветовите координати +a* и +b*.

1.3.5. Хот-стейдж микроскопски изследвания

На фигурите по-долу са предсатевени резулатите от Хот-стейдж микроскопскията на някои състави от вилемитови пигменти, получени по метода на твърдофазното спичане.

Фиг. 5. Хот-стейдж микроскопски анализ на състав 0,375CoO.1,625ZnO.SiO₂

От Фиг. 5. се вижда, че оптималната температура на синтез на този състав 1142°С, а температурата на топене е 1379°С.

Фиг. 6. Промяна в пробата за състав 0,375СоО.1,625ZnO.SiO₂ при три температури: 1000°С, 1240°С и 1360°С

1.3.6. Сканираща електронна спектроскопия (СЕМ) на пигментите

На Фиг. 7. са представени микрофотографии на вилемитови пигменти в системата CoO.ZnO.SiO₂, синтезирани при 1100°С.

Фиг. 7. Микрофотографии на вилемитови пигменти в системата CoO.ZnO.SiO₂, синтезирани при 1100°C

Изображенията на CEM на синтезираните вилемитови пигменти след термична обработка при 1100°C показват наличието на сравнително едри частици с размери около 10÷20µm, придружени от безформени по-малки частици. Грубата форма на по-големите частици е допълнително доказателство за високата степен на кристалност на получените пигменти. Наличието на безформени частиците показва наличието най-вероятно на аморфни структури.

1.4. Синтезиране на вилемитови керамични пигменти по метода на твърдофазно спичане от отпадъци – индустриални биоотпадъци (оризови люспи)

Изследваните оризови люспи представляват технологичен отпадък от преработката на ориз сорт "Краснодарски 424", отглеждан в България и съдържа главно органична маса (целулоза, хемицелулози и лигнин) и неорганична част, състояща се основно от SiO₂ (~20%) и 5,5% смес от следните оксиди: CaO, Fe₂O₃, MgO, Al₂O₃, Na₂O, K₂O, MnO и следи от Cu и Pb, коит имат ролята на минерализатори при синтезиране на пигментите.

Фиг. 8. СЕМ на окислени оризови люспи

На Фиг. 8 (A, B) са представени снимки на изгорени във въздушна среда оризови люспи, с по-голямо увеличение (Фиг. 8 А.) и по-малко увеличение (Фиг. 8 В.). От двете снимки се вижда, че след отделяне на органиката в люспата остава основно неорганичната маса, формираща силициево-кислородния скелет. Силициево кислородния скелет (Si–O–Si), който изгражда окислената люспа особено ясно се вижда на Фиг. 8 В.

Синтезът на пигментите е извършен по метода на твърдофазното спичане при 900°С, 1000°С, 1100°С и 1150°С.

1.4.1. Рентгенофазов анализ

На Фиг. 9. са представени рентгенограми на синтезираните Со-вилемитови керамични пигменти в система 0,375CoO.1,625ZnO.SiO₂,

Фиг. 9. РФА на Со съдържащи пигменти, синтезирани при 1000°С и 1150°С w– вилемит, tr– тридимит (SiO₂), z– ZnO, с– CoO

Горната дифрактограма показва, че е възможно получаване на вилемитови пигменти чрез замяна на ZnO с CoO. От фигурата може да се направи извод, че най-добри резултати се получават при съставите с 0,375CoO. Пигментите изпечени при 900°С, 1000°С и 1100°С основно съдържат Zn₂SiO₄ (вилемит). РФА показва, че количеството на вилемита Zn₂SiO₄ се увеличава при 1000°С. При състава, изпечен при 1000°С става пълно заместване на цинка с кобалта в кристалната решетка на цинковия силикат, образува се вилемит-кобалтин и на това се дължи и по-добрия измерен резултат при определяне на цветовите координати на пигментите (b*= -41,24 и L*= 39,08). Значително количество кобалтин се получава и при съставите с 1mol CoO, но измерените цветови координати са по-лоши от тези при съставите с 0,375CoO.

При високотемпературното изпичане освен, че се образува ново химично съединение – вилемит и/или шпинел, остават непрореагирали изходни оксиди, чиито пикове се отчитат на всяка от рентгенограмите. Резултатите от РФА показват, че SiO₂ от оризовите люспи почти изцяло реагира с ZnO при някои състави до получаване на вилемит, а при други SiO₂ се свързва с ZnO преимуществено до получаване на шпинел – ZnO.Fe₂O₃ и в по-малка степен се синтезира вилемит. На Фиг 9. се забелязва, че поради съдържащите се алкални примеси в пепелта от оризови люспи (Na₂O, K₂O), високотемпературната модификация на SiO₂ е α-тридимит а не α-кристобалит, както се случва обикновено в практиката.

1.4.2. Инфрачервена спектроскопия

Извършен е ИЧ анализ на три състава, синтезирани при 1150°С и съдържащи съответно: СоО, NiO и Fe₂O₃. FT-IR спектрите на състви: CoO.ZnO.SiO₂, NiO.ZnO.SiO₂ и Fe₂O₃.ZnO.SiO₂ синтезирани при 1150°С са показани при на Фиг. 10÷12.

Фиг. 10. FTIR спектър на състав CoO.ZnO.SiO₂

Фиг. 11. FTIR спектрър на състав NiO.ZnO.SiO₂

Фиг. 12. FTIR спектрър на състав Fe₂O₃.ZnO.SiO₂

Слабите ивици на поглъщане и в трите спектъра, с максимум при около 3436-3500 cm⁻¹ могат да се свържат с валентните колебания на връзката О–Н в свързаните с водородни връзки молекули вода. Слабата ивица при 1631,15, 1650,93 и 1615,11 cm⁻¹ е в резултат на деформационните трептения на водните молекули (δ-H₂O).

Интензивната ивица при 1096,81 cm⁻¹ и 1096,78 cm⁻¹ се дължи на валентните колебания на силициево-кислородните тетраедри – v_{as} (SiO₄). Характеристичните ивици при 976,98 cm⁻¹ и 972,12 cm⁻¹; 928.07 cm⁻¹ и 930,93 cm⁻¹; 895,39 cm⁻¹ и 899,83 cm⁻¹, съответстват на асиметричните валентни вибрации на силициево-кислородните тетраедри v_{as} (SiO₄). Характеристичните ивици при 866,21 cm⁻¹ и 868,60 cm⁻¹, и наличието на ивица при 794 cm⁻¹ може да се дължи на симетричните вибрации (v_s) на Si–O връзки от силициево-кислородните тетраедри (SiO₄). Двете ивици при 576,30 cm⁻¹, респ. 576,00 cm⁻¹ и 614,79 cm⁻¹, характеризират вилемитовата структура и по всяка вероятност се дължат на асиметричните валентни вибрации (v_{as} ZnO₄) и на симетричните такива на цинковите тетраедри (v_s ZnO₄). Наличието на ивица при смастотната област на спектъра при 460/459,92 cm⁻¹ може да бъде отнесено към деформационните колебания (δ_{as}) на връзките Si–O от тетраедрите SiO₄, както и на асиметричните валентни вибрации на ZnO₄).

1.4.3. Спектрофотометрично измерване на цвета

Резултатите за цветовите координати на синтезирани пигменти са представени в следващата Таблица 7.

Таблица 7. Резултати от определянето на цветовите координати на синтезирани пигменти с оризови люспи при различни температури

№ sample	Composition	Color	T ,°C	L*	a *	b *
C1	CoO.ZnO.SiO ₂		1000	31,50	-3,35	-9,50
C2	CoO.ZnO.SiO ₂		1150	28,25	3,03	-17,74
C3	0,375 CoO.1,625.ZnO.SiO ₂		900	35,82	-6,93	-14,26
C4	0,375 CoO.1,625.ZnO.SiO ₂		1000	35,68	2,08	-41,24
C5	0,375 CoO.1,625.ZnO.SiO2		1100	34,70	10,72	-39,08
Fl	Fe ₂ O ₃ .ZnO.SiO ₂		1000	53,14	23,23	44,16
F2	Fe ₂ O ₃ .ZnO.SiO ₂		1150	35,91	14,12	17,17
Ň1	NiO.ZnO.SiO ₂		1000	69,86	-3,94	21,62
N2	NiO.ZnO.SiO ₂	ñ 👘	1150	63,29	-13,75	15,97

От представените данни става ясно, че най-добри резултати се наблюдават при синтеза на Со-вилемитовите пигменти. С най-наситен цвят е пигмента със състав 0,375CoO.1,625ZnO.SiO₂, изпечен при 1000°С, където количеството на измерения син цвят в системата CIELab е b*= -41,24. Резултатите от Таблица 7. показват, че оптималната температура за синтез на сините Со-вилемитови пигменти е 1000°С.

Синтезираните пигменти с участието на желязо са с кафяв цвят като с увеличаване температурата на изпичане се наблюдава намаляване стойностите на координатите а* и b*, при 1000°С (а*= 23,23, b*= -44,16), а при 1100°С, (а*=-14,12, b*= -17,17).

При получаването на Ni-вилемитови пигменти цвета е зелен като с повишаване температурата на изпичане се увеличава количеството на зеления цвят (-a*), а параметъра (+b*) намалява стойности си.

При всички синтезирани пигменти се наблюдава тенденция за намаляване стойностите на яркостта L* (пигментите стават по-тъмни) с повишаване температурата на изпичане.

1.5. Синтез на вилемитови керамични пигменти по зол-гел технология

Подготвени са проби за синтез на вилемитови пигменти със съставите: 0,375CoO.1,625ZnO.SiO₂, 0,375NiO.1,625ZnO.SiO₂, 0,375FeO.1,625ZnO.SiO₂, изпечени при 600-1100°C с изотермична задръжка от 4 часа.

1.5.1. Рентгенофазов анализ на получените керамични пигменти Рентгенограми на синтезираните керамични пигменти са представени на Фиг. 13.

Фиг. 13. Рентгенограми на синтезирани вилемитови пигменти в системата 0,375CoO.1,625ZnO.SiO₂ по зол-гел метода при различни температури: ● – Со вилемит Zn₂SiO₄; **x** – цинкит ZnO; ◊ - Co₃O₄

От представените рентгенограми на Фиг. 13 се вижда, че основната фаза Совилемит е синтезирана още при 800°С като се наблюдават и рефлекси на кобалтов оксид и цинков оксид. С повишаване температурата на термообработка се забелязва тенденция за увеличаване интензитета на пиковете на основната фаза Со-вилемит за сметка на намаляването на интензитета на пиковете на ZnO.

1.5.2. Инфрачервена спектроскопия на синтезираните керамични пигменти по зол-гел технологията

На Фиг. 14÷16 са представени ИЧ спектрите на вилемитови пигменти, получени по зол-гел технологията:

0,375CoO.1,625ZnO.SiO₂ (900°C), 0,375CoO.1,625ZnO.SiO₂ (1100°C) 0,375NiO.1,625ZnO.SiO₂ (900°C), 0,375NiO.1,625ZnO.SiO₂ (1100 °C) 0,375FeO.1,625ZnO.SiO₂ (900°C), 0,375FeO.1,625ZnO.SiO₂ (1100 °C)

Фиг.14. ИЧ спектри на състави:

0,375CoO.1,625ZnO.SiO₂ (900°C) и 0,375CoO.1,625ZnO.SiO₂ (1100°C)

Фиг. 15. ИЧ спектри на състави:

0,375NiO.1,625ZnO.SiO₂ (900°C) и 0,375NiO.1,625ZnO.SiO₂ (1100°C)

Фиг. 16. ИЧ спектри на състави: 0,375FeO.1,625ZnO.SiO₂ (900°C) и 0,375FeO.1,625ZnO.SiO₂ (1100 °C)

В Таблица 8. са дадени основните характерни максимуми на поглъщане на вилемита.

Вълнови числа на пиковете (cm ⁻¹)	Тип на колебанията, връзка
977; 931; 900	(v ₃) Si–O Асиметрични валентни
868, 869	(v1) Si–O Симетрични валентни
600-615	(v ₃) Zn–O Асиметрични валентни в ZnO ₄
575	(v ₁) Zn–O Симетрични валентни в ZnO ₄
459	(v4) SiO4 Деформационни валентни

Таблица 8. Основни характерни максимуми на поглъщане на вилемита

И на трите ИЧ спектрограми се виждат ивици при 3450÷3460cm⁻¹, както и при 1630cm⁻¹, които могат да се свържат с присъствието на –ОН групи. При това при по-високата температура и на трите фигури тези ивици намаляват. Така например широката и интензивна ивица на поглъщане с максимум при около 3430 ст⁻¹ може да се свърже от една страна с валентните трептения на връзката О–Н в свързаните с водородни връзки молекули вода. Ивиците на поглъщане, които се наблюдават в трите ИЧ-спектъра при 163ст⁻¹ може да се свърже също с -ОН групите. Слабата ивица при 1630cm⁻¹ е в резултат на деформационните трептения на водните молекули (δ-H₂O). Интензивната ивица при около 1100cm⁻¹ се дължи на валентните трептения на силициево-кислородните тетраедри – v_{as} (SiO₄). Тази ивица може да се отнесе към валентните трептения на връзката Si-O от тетраедрите. Характеристичните ивици при 977ст⁻¹, 930ст⁻¹, 896-903ст⁻¹ съответстват на асиметричните валентни вибрации на силициево-кислородните тетраедри v_{as} (SiO₄). Характеристичните ивици при 868÷869сm⁻¹ може да бъде обяснено със симетричните вибрации (v_s) на Si-O връзки от силициевокислородните тетраедри (SiO₄). Двете ивици при 576,30 cm⁻¹, респ. 576,00 qcm⁻¹ и 614,79cm⁻¹, характеризират вилемитовата структура и по-всяка вероятност се дължат на асиметричните валентни вибрации (vas ZnO4) и на симетричните такива на цинковите тетраедри (v_sZnO₄). Наличието на ивици на поглъщане в нискочестотната област на спектъра при 460/459,92cm⁻¹ може да бъде отнесено към деформационните колебания (δ_{as}) на връзките Si–O от тетраедрите SiO₄, както и на асиметричните валентни вибрации на ZnO_4 ($v_{as}ZnO_4$).

1.5.3 Измерване на цвета

От представените данни в Таблица 9. се вижда, че цвета на синтезираните пигменти с Со и Ni е син. С увеличаване на температурата на изпичане се наблюдава намаляване на светлотата L*. Количеството на синия цвят (-b*) е най-голямо при пигмента със състав 0,375CoO.1,625ZnO.SiO₂, синтезиран при 1100°С. Количеството на червения цвят (+a*) при пигментите с участието на Fe е най-голямо при пигмента със състав 0,375FeO.1,625ZnO.SiO₂, синтезиран при 1100°С.

Таблица 9. Резултатите от измерванията на цветовите координати на пигментите синтезирани при 900°С, 1000°С, 1100 °С и 1200°С.

№	Composition	Colour	L*	a *	b *
1	0,375CoO.1,625ZnO.SiO ₂ - 900°C		47,67	-10,96	-9,67
2	0,375CoO.1,625ZnO.SiO2 - 1000°C		44,08	-9,57	-22,02
3	0,375CoO.1,625ZnO.SiO ₂ - 1100°C		42,34	-3,82	-45,44
4	0,375CoO.1,625ZnO.SiO ₂ - 1200°C		41,65	-0,65	-37,56
5	0,375NiO.1,625ZnO.SiO ₂ - 900°C		74,83	-4,69	4,05
6	0,375NiO.1,625ZnO.SiO ₂ - 1000°C		72,52	-8,58	-0,52
7	0,375NiO.1,625ZnO.SiO2 -1100°C		68,09	-14,40	-5,11
8	0,375NiO.1,625ZnO.SiO ₂ - 1200°C		64,56	-12,17	-4,75
9	0,375FeO.1,625ZnO.SiO ₂ - 900°C		67,85	19,65	39,67
10	0,375FeO.1,625ZnO.SiO ₂ - 1000°C		64,88	20,61	42,61
n	0,375FeO.1,625ZnO.SiO ₂ - 1100°C		57,14	22,67	44,76
12	0,375FeO.1,625ZnO.SiO2 - 1200°C		55,34	20,34	41,45

1.5.4. Сканираща електронна микроскопия

На Фиг. 17. е представена микрфотография на състав 0,375CoO.1,625ZnO.SiO₂.

Фиг. 17. СЕМ на състав 0,375CoO.1,625ZnO.SiO₂

СЕМ на съставите, съдържащи хромофор Со²⁺ (състав 0,375СоО.1,625ZnO.SiO₂, 1100°С) показват, че пигментите са монодисперсни с ясен кристален хабитус и размери от порядъка на 5÷20µm.

1.5.5. Електронен парамагнитен резонанс на получените керамични пигменти

ЕПР спектърът на пигмент 0,375CoO.1,625ZnO.SiO₂, синтезиран при1100°C беше регистриран в температурния интервал 100÷295К (Фиг.18.).

Фиг. 18. ЕПР спектър на проба 0,375СоО.1,625ZnO.SiO₂ (1100°С) при температура на регистрация: 295К (черна линия), 210К (синя линя) и 120К (червена линия)

ЕПР спектрите на проба 0,375CoO.1,625ZnO.SiO₂, синтезирана при 1100°C бяха регистрирани в температурния интервал 120÷295К. При стайна температура се наблюдава асиметричен широк сигнал с ефективен g-фактор около 2,75 и ширина на линията около 218mT. С понижаване на температурата сигналът се разширява и при ниски температури върху вече описания сигнал се наслагват сравнително широки, неразрешени сигнали.

Единичният асиметричен сигнал, установен при 295К, се приписва на обменно свързани високоспинови Со²⁺ йони в поле с октаедрично изкривяване.

Спектърът, регистриран при 120К, демонстрира появата на линии от свръхфината структура на Со²⁺ йоните (I= 7/2), насложени върху широкия сигнал, описан по-горе на обменно свързани Со²⁺ йони. Свръхфината структура става видима при ниски температури, поради значителното разширяване на доминиращия при 295К сигнал.

1.6. Кристалохимичен анализ на синтезираните вилемитови пигменти

За да се потърси зависимост между вилемита и поведението на използваните хромофорни йони в Таблица 10. са представени степените на окисление, координационно число и йонните радиуси на използваните хромофорни елементи по Берри.

Елемент	Коорди-	Йонен	Елемент	Коорди-	Йонен
Степен на	национно	радиус	Степен на	национн	радиус
окисление	число	Е	окисление	о число	Е
Zn^{2+}	IV	0,59	Ni ²⁺	IV	0,55
	VI	0,72		V	0,63
	VIII	0,84		VI	0,69
			Ni ³⁺	VI	0,56
Co ²⁺	IV	0,58	Ni ⁴⁺	VI	0,48
	V	0,67	Mn ²⁺	IV	0,66
	VI	0,65		V	0,75
	VIII	0,90		VI	0,67
Co ³⁺	VI	0,54		VII	0,90
Co ⁴⁺	IV	0,40		VIII	0,96
	VI	0,53	Mn ³⁺	V	0,58
Fe ²⁺	IV	0,63		VI	0,59
	VI	0,64	Mn ⁴⁺	IV	0,39
	VIII	0,92		VI	0,53
Fe ³⁺	IV	0,49	Mn ⁵⁺	IV	0,33
	V	0,58	Mn ⁶⁺	IV	0,26
	VI	0,55	Mn ⁷⁺	IV	0,25
	VIII	0,78		VI	0,46
Fe ⁴⁺	VI	0,59			

Таблица 10. Кристалохимични показатели на елементите Zn, Co, Fe, Ni и Mn

Анализирайки представените данни в Таблица 10. могат да се направят следните заключения:

• Като изоморфни примеси в кристалната решетка на вилемита се включват Co^{2+} , Ni^{2+} и Mn^{2+} . В тези случаи са изпълнени всички условия за изовалентен изоморфизъм (разликите в йонните радиуси между Zn^{2+} и съответните хромофорни йони са съответно $\Delta = 1,7\%$, 6,8% и 11,9%).

• При пигментите с участието на Fe³⁺ отсъства наличието на изискваните условия за изовалентно заместване по степен на окисление и размер на йонните радиуси (разликата в йонните радиуси между Zn²⁺ и Fe³⁺ е Δ = 16,9%). В случая с железните пигменти ЕПР анализа потвърждава неговата степен на окисление – Fe³⁺, а Мьосбауеровия спектър показва, че той е под формата на ZnFe₂O₄. Този вид пигменти могат да бъдат отнесени към групата на капсулираните (включени) пигменти.

1.7. Изследване на вилемитовите пигменти в производствени условия

Всички състави от пигменти бяха изследвани в производствени условия.

Със синтезираните от нас вилемитови пигменти бяха извършени полупромишлени изпитания в завод "Хан Омуртаг" АД, гр. Шумен. Пигментите бяха въведени в количество от 5% в бяла полутранспарентна глазура за облицовъчни стенни плочки, технология монопороза формат 25х40.

Таблица 11. Химичен състав на глазурата

	3Н	SiO ₂	Al_2O_3	CaO	MnO	Fe ₂ O ₃
Во	12,3	50,2	32,50	0,22	0,30	0,83
FTAE74465		61,2	9,91	15,8	6,0	
FOAE8034		55,0	9,0	9,0	12,9	

На Фиг. 19. са представени снимките на изпечените плочки, покрити с глазура, оцветена с вилемитови пигменти.

Фиг. 19. Снимки на плочки, покрити с глазура, оцветена с вилемитови пигменти

Пигментите бяха тествани при един и същ цикъл на изпичане. Получиха се интензивни и избистрени цветове с присъщо за състава оцветяванне. Вижда се разликата и влиянието на различни типове глазура, според техният състав и как всеки пигмент проявява различно оцветяване. При използването на Mn с един и същ % в матова глазура е с кафяво-розов оттенък, а при полутранспарентен гланц преминава в бежово.

При използването на Ni в един и същ % в матова глазура е бежов, а в полутранспарентен преминава в светло кремаво. При използването на Co и Fe запазваме специфичният син и жълт цвят и в двата вида глазура. Измерването на цвета е извършено в завод "Хан Омуртаг", гр. Шумен, представено на Фиг. 20. и Фиг. 21.

Фиг. 20. Вилемитов пигмент с хромофор Fe

Фиг. 21. Вилемитов пигмент с хромофор Со

2. СИНТЕЗ НА ШПИНЕЛНИ КЕРАМИЧНИ ПИГМЕНТИ

2.1. Получаване на шпинелни пигменти чрез твърдофазно спичане от химически чисти оксиди, при заместване на двувалентния йон

При синтеза се използва минерализатор H₃BO₃ за намаляване температурата на синтеза и ускоряване процесите на образуване на новата фаза.

Пигментите бяха изпечени при 800°С, 900°С, 1000°С, 1100°С и 1200°С.

2.1.1. Изследвания върху пигментите с хромофор Со²⁺

Синтезирани са шпинелни пигменти в системата CoO.ZnO.Al₂O₃. За получаването им са уточнени следните състави: $xCoO.(1-x)ZnO.Al_2O_3$, където x=0,1; 0,3; 0,5; 0,7; 0,9.

Материалите използвани за синтеза са: CoO, ZnO, Al(OH)₃ и H₃BO₃.

Таблица 12. Състави на синтезираните шпинелни пигменти в системата xCoO.(1-x)ZnO. Al₂O₃

№ пигмент	Състав на пигмента	Температура на синтез
1	0,1CoO.0,9ZnO.Al ₂ O ₃	1000 °C
1	0,1CoO.0,9ZnO.Al ₂ O ₃	1100 °C
1	0,1CoO.0,9ZnO.Al ₂ O ₃	1200 °C
2	0,3CoO.0,7ZnO. Al ₂ O ₃	1000 °C
2	0,3CoO.0,7ZnO. Al ₂ O ₃	1100 °C
2	0,3CoO.0,7ZnO. Al ₂ O ₃	1200 °C
3	0,5CoO.0,5ZnO. Al ₂ O ₃	1000 °C
3	0,5CoO.0,5ZnO. Al ₂ O ₃	1100 °C
3	0,5CoO.0,5ZnO. Al ₂ O ₅	1200 °C
4	0,7CoO.0,3ZnO. Al ₂ O ₃	1000 °C
4	0,7CoO.0,3ZnO. Al ₂ O ₃	1100 °C
4	0,7CoO.0,3ZnO. Al ₂ O ₃	1200 °C
5	0,9CoO.0,1ZnO. Al ₂ O ₃	1000 °C
5	0,9CoO.0,1ZnO. Al ₂ O ₃	1100 °C
5	0,9CoO.0,1ZnO. Al ₂ O ₃	1200°C

Рентгенограми на синтезираните шпинелни керамични пигменти са представени на Фиг. 22.

Фиг. 22. Рентгенограми на синтезирани шпинелни пигменти в системите: A – 0,1CoO.0,9ZnO.Al₂O₃; B – 0,3CoO.0,7ZnO.Al₂O₃, при 1000°С и 1100°С • – Со-гаанит (Со_{0,04}Zn_{0,96}Al₂O₄), **x** – СоО

От представените рентгенограми на Фиг. 22. се вижда, че основната фаза на шпинела Со-дотиран гаанит (CoO_{0,04}Zn_{0,96}Al₂O₄) е синтезирана още при 1000°С като се наблюдават и рефлекси на CoO. С повишаване температурата на термообработка се забелязва тенденция за увеличаване интензитета на пиковете на основната фаза Со-гаанит за сметка на намаляването на интензитета на пиковете на СоО.

Рентгенограмите на Фиг. 22. показват, че с увеличаване на концентрацията на CoO се забелязва намаляване интензитета на линиите на основната фаза Согаанит и увеличаване интензитета на пиковете на CoO. Избрана е оптимална температура за синтез – 1100°C. В Таблица 13. са представени резултатите от измерванията на цветовите координати.

От представените данни в Таблица 13. се вижда, че цвета на синтезираните пигменти е син. С увеличаване на температурата на изпичане се наблюдава намаляване на светлотата L*. Количеството на синия цвят (-b*) е най-голямо при пигмента със състав 0,1CoO.0,9ZnO.Al₂O₃ синтезиран при 1100°C.

N₂	Composition	Colour	L*	a *	b *
1	0,05CoO.0,95ZnO.Al ₂ O ₃		51.5	-16,9	0,89
2	0,1CoO.0,9ZnO. Al ₂ O ₃		45.2	-17,8	-13,8
3	0,3CoO.0,7ZnO. Al ₂ O ₃		32,4	-12,1	-3,7
4	0,5CoO.0,5ZnO. Al ₂ O ₃		34,5	-8,7	-3,4
5	0,7CoO.0,3ZnO. Al ₂ O ₃		32,2	-8,2	-3,3
6	0,9CoO.0,1ZnO. Al ₂ O ₃		33,5	-7,4	-7,2

Таблица 13. Резултатите от измерванията на цветовите координати на пигментите, синтезирани при 1100°С

Синтезирани са сини керамични пигменти на основата шпинели с участието на Co²⁺ като хромофорен елемент по метода на твърдофазно спичане. Установени са оптималните параметри на процеса на синтез. Най-добри резултати са получени при пигментите синтезирани при температура на изпичане 1100°С. Синтезираните пигменти са подходящи и могат успешно да се прилагат в глазури за облицовъчни плочки и санитарна керамика.

2.1.2. Изследвания върху пигментите с хромофор меден йон Cu²⁺

Синтезирани са шпинелни пигменти в системата $xCuO.(1-x)ZnO.Al_2O_3$, където x=0,1; 0,3; 0,5.

Резултатите от РФА на получените керамични пигменти са представени на Фиг. 23.

Фиг. 23. Рентгенограми на синтезирани шпинелни пигменти в системата 0,1CuO.0,9ZnO.Al₂O₃ при различни температури ● – гаанит (ZnAl₂O₄); ◊ – Zn_{0.9}Cu_{0.1}O; **x** – CuO

Извършен е ЕПР анализ на пигмент със състав 0,3CuO.0,7ZnO.Al₂O₃, синтезиран при 1100°С. Резултатът е представен на Фиг. 24.

Фиг. 24. ЕПР спектър на 0,3CuO.0,7ZnO.Al₂O₃ (1100°C) при температури на регистрация: 120К, 295К и 400К.

Червените линии представят усилени линиите от свръхфината структура в успоредната част на спектъра.

ЕПР спектъра на пигмента със състав 0,3CuO.0,7ZnO.Al₂O₃ (1100°C) е регистриран в температурния интервал 120÷450К (Фиг. 24.). Наблюдаваният спектър е съставен от успоредна и перпендикулярна част като $g_{II(z)}>g_{I(X,Y)}$. В успоредната компонента на спектъра се наблюдават четири линии от свръхфина структура, докато в перпендикулярната част на спектъра не се установява разрешаване на линии от свръхфино взаимодействие Така описаният спектър е характерен за изолирани Cu²⁺ йони, намиращи се в аксиално удължена октаедрична симетрия. Четирите линии, указващи наличие на свръхфина структура произлизат от взаимодействието на електронния спин (S= ¹/₂) на Cu²⁺ с ядрения спин на изотопите ⁶³Cu²⁺ и ⁶⁵Cu²⁺ (I= 3/2).

При температура на регистриране 120К в успоредната част на спектъра се установяват четири ясно различими линии на свръхфино взаимодействие (отбелязани с 1, 2, 3 и 4), описващи се със следните ЕПР параметри: $g_{II}=2,3$ и $A_{II}=13,0$ mT. Успоредно с тези линии се установяват и допълнителни по-слабо интензивни линии (отбелязани със символ *).

С повишаване температурата на измерване до 450К се наблюдава изместване на квартета от линии на свръхфино взаимодействие (отбелязани с 1, 2^I, 3^I и 4^I) към по-силно магнитно поле като извършената симулация показва следните ЕПР параметри: g_{II}= 2,313, и A_{II}= 13,7mT.

Спектърът при 295К е преходен и в него се наблюдават едновременно линии от свръхфините структури при 120 и 450К.

В целия температурен интервал на провеждане на анализа в перпендикулярната част на спектъра се наблюдават две ясно разграничими линии, променящи позициите си и интензитета си с промяна на темпертурата на измерване.

Можем да заключим, че регистрирането на повече от един квартет от линии на свръхфино взаимодействие в успоредната част на спектъра и наличието на две линии в перпендикулярната част показват съществуването на повече от един ЕПР сигнал. Тези сигнали произлизат от Cu²⁺ йони, характеризиращи се с различия в координационното си обкръжение. Успоредните части на техните спектри са припокрити, промяната интензитета частично a В на линиите от перпендикулярната област, при вариране на температурата на регистрация, указва различни температурни зависимости за наблюдаваните ЕПР сигнали.

2.1.3. Изследвания върху пигментите с хромофор манганов йон Mn²⁺

Синтезирани са шпинелни пигменти с хромофор Mn²⁺ в системата xMnO.(1x)ZnO.Al₂O₃, където x= 0,1; 0,3; 0,7 и 0,9.

N⁰	Composition	Colour	L*	a *	b *
1	0,1MnO.0,9ZnO.Al ₂ O ₃		41,2	2,7	17,7
2	0,3MnO.0,7ZnO.Al ₂ O ₃		36,3	2,5	10,5
3	0,5MnO.0,5ZnO.Al ₂ O ₃		34,1	13,1	18,8
4	0,7MnO.0,3ZnO.Al ₂ O ₃		32,1	11,3	17,8
5	0,9MnO.0,1ZnO.Al ₂ O ₃		31,4	10,2	16,5

Таблица 14. Определяне на цветови храктеристики на пигменти с хромофор Mn²⁺

От Таблица 14. се вижда, че най-добри резултати се наблюдават при с състав № 3 0,5MnO.0,5ZnO.Al₂O₃.

Извършен е ЕПР анализ на състав 0,3MnO.0,7ZnO.Al₂O₃. Резултати от ЕПР анализ на 0,3MnO.0,7ZnOлAl₂O₃, синтезиран при 1100°С е представен на Фиг. 25.

Фиг. 25. ЕПР спектър на 0,3MnO.0,7ZnO.Al₂O₃ (1100°C) при температури на регистрация: 100К (червена линия) и 295К (черна линия).

ЕПР спектърът на 0,3MnO.0,7ZnO.Al₂O₃ (1100°C) се доминира от шест тесни линии, отстоящи на разстояние 8,0mT, разположени в областта 310÷360mT. Наблюдаваният секстет е разположен върху втора, по-широка линия с приблизителен g фактор 2,0.

Характеристиките на двата вида описани сигнали дават основание да бъдат приписани на Mn^{2+} йони, намиращи се в октаедрична координация. Широкият сигнал с g-фактор 2,0 се дължи на обменно свързани Mn^{2+} йони. Секстетът произлиза от магнитно изолирани Mn^{2+} йони и е резултат от взаимодействието на електронния спин на Mn^{2+} йоните с техния собствен ядрен спин (⁵⁵ Mn^{2+} , I= 5/2).

2.1.4. Изследвания върху пигментите с хромофор хромен йон Cr²⁺

Синтезирани са шпинелни пигменти с хромофор Cr^{2+} в системата х CrO.(1x)ZnO.Al₂O₃, където x= 0,1; 0,3; 0,7 и 0,9.

Извършен е ЕПР анализ на състав 0,3CrO.0,7ZnO.Al₂O₃. Резултатите от ЕПР анализ на пигмент 0,3CrO.0,7ZnO.Al₂O₃ синтезиран при 1100°C са представени на Фиг. 26.

Фиг. 26. ЕПР спектър на 0,3CrO.0,7ZnO.Al₂O₃ (1100°C) при температури на регистрация в интервала 100÷450К.

В ЕПР спектърът на 0,3CrO.0,7ZnO.Al₂O₃ (1100°C) се наблюдава единичен симетричен сигнал с g фактор 1,98. Анализът на спектрите в интервала 450К÷100К показва запазване позицията на сигнала в целия температурен интервал, съпроводено с нарастване ширината на сигнала от 40mT при температура на измерване 450К÷82mT, при температура на измерване 100К. Наблюдава се незначителна намаление в интензитета на сигнала при преминаване от ниска към висока температура на измерване.

Така описаният сигнал се дължи на обменно свързани Cr³⁺ йони като нарастването на ширините на линията с понижение на температурата указва антиферомагнитен механизъм на осъществяване на обменните взаимодействия.

2.1.5. Изследвания върху пигментите с хромофор железен йон Fe²⁺

Синтезирани са шпинелни пигменти с хромофор Fe^{2+} в системата xFeO.(1-x)ZnO.Al₂O₃, където x= 0,1; 0,3; 0,7 и 0,9.

Извършен е ЕПР анализ на състав 0,3FeO.0,7ZnO.Al₂O₃. Резултатите от ЕПР анализ на 0,3FeO.0,7ZnO.Al₂O₃, синтезиран при 1100°С е представен на Фиг. 27.

Фиг. 27. ЕПР спектър на 0,3FeO.0,7ZnO.Al₂O₃ (1100°C) при температури на регистрация: 120К (червена линия), 295К (черна линия), 470К (синя линия)

ЕПР спектър на 0,3FeO.0,7ZnO.Al₂O₃, синтезиран при 1100°C беше регистриран в температурния интервал 120÷470К.

Полученият спектър се състои от единична линия с g=2,0. Анализът на температурната зависимост на сигнала показва запазване на позицията му в целия температурен интервал на измерване, нарастване на ширината на линята (ΔH_{pp}) с понижение на температурата от 130mT при 470K до 190mT при 120K и несъществено понижаване на интензитета на регистрираната линия с нарастване на температурата.

Получените данни от анализа на проба 0,3FeO.0,7ZnO.Al₂O₃ (1100°C) дават основание полученият сигнал да се припише на обменно свързани Fe³⁺ йони, включени в диамагнитна матрица.

2.2. Получаване на шпинелни пигменти чрез твърдофазно спичане от химически чисти оксиди, при заместване на тривалентния йон

Съставите на пигментите са представени в Таблици 15÷18.

Таблица 15. Състав на шпинелни пигменти от системата ZnO.xCr ₂ O ₃ .(1-x)Al ₂ O ₃ , където x= 0,05; 0,1; 0,3; 0,5				
Състав на шпинели	1000°С задръжка 1 час	1200°С задръжка 1 час		
ZnO.0,05Cr ₂ O ₃ .0,95Al ₂ O ₃	A1	1A		
ZnO.0,1Cr ₂ O ₃ .0,9Al ₂ O ₃	A2	2A		
ZnO.0,3Cr ₂ O ₃ .0,7Al ₂ O ₃	A3	3A		
ZnO.0,5Cr ₂ O ₃ .0,5Al ₂ O ₃	A4	4A		

Таблица 16. Състав на шпинелни пигменти от системата					
ZnO.xFe ₂ O ₃ .(1-x)Al ₂	ZnO.xFe2O3.(1-х)Al2O3, където х= 0,05; 0,1; 0,3; 0,5				
Състав на шпинели	1000°С задръжка 1 час	1200°С задръжка 1 час			
ZnO.0,05Fe ₂ O ₃ .0,95Al ₂ O ₃	B1	1B			
ZnO.0,1Fe ₂ O ₃ .0,9Al ₂ O ₃	B2	2B			
ZnO.0,3Fe ₂ O ₃ .0,7Al ₂ O ₃	B3	3B			
ZnO.0,5Fe ₂ O ₃ .0,5Al ₂ O ₃	B4	4B			
Таблица 17: Състав на	шпинелни пигменти	от системата			
Zn	O.Fe ₂ O ₃ .Al ₂ O ₃				
Състав на шпинели	1000°С задръжка 1 час	1200°С задръжка 1 час			
ZnO.0,13 Fe ₂ O ₃ .1,14Al ₂ O ₃	C1	1C			
ZnO.0,25Fe ₂ O ₃ .1,10Al ₂ O ₃	C2	2C			

Таблица 18. Състав на шпинелни пигменти от системата				
ZnO. Cr ₂ O ₃ .Al ₂ O ₃				
Състав на шпинели	1000°C	1200°C		
	задръжка 1 час	задръжка 1 час		
ZnO.0,05 Cr ₂ O ₃ .0,95Al ₂ O ₃	C3	3C		
ZnO.0,1 Cr ₂ O ₃ .0,9Al ₂ O ₃	C4	4C		

ИЧ анализи на пигментите

Извършен е ИЧ анализ на пет състава, синтезирани при 1100°С и съдържащи съответно: 0,3CoO, 0,3CuO, 0,3MnO, 0,3Cr₂O₃ и 0,3Fe₂O₃. FT-IR спектрите са показани на Фиг. 28÷32.

Фиг. 28. FT-IR спектър на шпинелен пигмент със състав 0,3CoO.0,7ZnO.Al₂O₃

Фиг. 29. FT-IR спектър на шпинелен пигмент със състав 0,3CuO.0,7ZnO.Al₂O₃

Фиг. 30. FT-IR спектър на шпинелен пигмент със състав 0,3MnO.0,7ZnO.Al₂O₃

Фиг. 31. FT-IR спектър на шпинелен пигмент със състав 0,3Cr₂O₃.0,7ZnO.Al₂O₃

Фиг. 32. FT-IR спектър на шпинелен пигмент със състав 0,3Fe₂O₃O.0,7ZnO.Al₂O₃

Слабите ивици на поглъщане с максимум при около 3436-3500 cm⁻¹ могат да се свържат с валентните колебания на връзката O–H в свързаните с водородни връзки молекули вода. Слабата ивица при 1631,15, 1650,93 и 1615,11 cm⁻¹ е в резултат на деформационните трептения на водните молекули (δ -H₂O). Двете ивици при 576,30 cm⁻¹, респ. 576,00 cm⁻¹ и 614,79 cm⁻¹, характеризират шпинелната структура и по всяка вероятност се дължат на асиметричните валентни вибрации (v_{as} ZnO₄) и на симетричните такива на цинковите тетраедри (v_s ZnO₄). Наличието на ивици на поглъщане в нискочестотната област на спектъра при 460/459,92 cm⁻¹ може да бъде отнесено към асиметричните валентни вибрации на ZnO₄ (v_{as} ZnO₄).

2.3. Синтезиране на шпинелни керамични пигменти чрез оползотворяване на индустриални отпадъци

Синтезирани са шпинелни пигменти чрез оползотворяване на отпадъчен Со-Мо катализатор от "ЛУКОЙЛ Нефтохим Бургас" АД.

Оксид	Състав на Со-Мо катализатор, mass %
γ-Al ₂ O ₃	70,1
α-Al ₂ O ₃	4,8
Fe ₂ O ₃	4,4
NiO	0,3
CoO	14,6
MoO	5,8

Таблица 19. Състав на отпадъчен Со-Мо катализатор от процеса на каталитичен крекинг в "ЛУКОЙЛ Нефтохим Бургас" АД (mass %).

Съставите на синтезираните пигменти са дадени в Таблица 20.

Таблица 20. Състави на синтезираните пигменти преизчислени спрямо състава на отпадния Со-Мо катализатор

Оксид	А	В
Al ₂ O ₃	30,0	45,0
ZnO	60,0	40,0
CoO	5,84	8,74
MoO	2,32	3,44
Fe ₂ O ₃	1,72	2,62
NiO	0,12	0,20
Общо:	100%	100%

• Рентгенофазов анализ на получените керамични пигменти с използването на Со-Мо катализатор

Рентгенограми на синтезираните керамични пигменти с използването на Со-Мо катализатор са представени на Фиг. 33.

Фиг. 33. Рентгенограми на синтезирани шпинелни пигменти състав В с участието на Со-Мо катализатор при 900°С и 1100°С

• – гаанит (ZnAl₂O₄); \Diamond – ZnO

От представенте рентгенограми се вижда, че при синтезираните пигменти със състав В основната фаза на шпинела гаанит започва да се синтезита при 900°С за 1 час като с повишаване на температурата до 1100°С се заблязва повишаване интензитета на пиковете на основната фаза, за сметка на намаляването на интензитета на пиковете на цинковия оксид. Забелязва се пълно превръщане на наличния γ -Al₂O₃ от отпадния катализатор в шпинел ZnAl₂O₄.

Спектрофотометрично измерване на цвета на синтезираните пигменти

Composition	T,⁰C	Colour	L*	a *	b *
	900		85,9	-15,9	11,0
Проба А 10g. Co-Mo Cat	1000		72,6	-27,1	8,2
+ 15g. ZnO	1100		58,5	-24,0	5,3
	1200		56,7	-25,4	6,9
	900		82,8	-7,3	0,6
Проба В	1000		75,3	-9,4	-19,4
+ 10g. ZnO	1100		62,1	-10,7	-25,0
	1200		53,1	-10,1	-20,3

Табл. 21. Цветови характеристики на получените пигменти

От представените данни се вижда, че при Проба А цвета е зелен, а при Проба В цвета е син, което показва че с увеличаване съдържанието на отпадния катализатор цвета на пигмента се променя от зелен в син. Забелязва се тенденция за намаляване на светлотата L* с увеличаване температурата на изпичане. Найдобър син пигмент е получен при състава на проба В изпечен при 1100°С, при който стойността на показателя b*= -25,0.

> Сканираща електронна споктроскопия

На Фиг. 34. са представени микрофотографиите на пигменти, получени с участието на отпадни катализатори. От фигурата се вижда, че пробата е полидисперсна и се наблюдават два типа кристали: с големина на частиците 2÷3µm и между 7÷10µm.

Фиг. 34. Микрофотографии на синтезираните пигменти с участието на отпадни катализатори при различни температури

2.4. Изследване на получените шпинелни пигменти в реални производствени условия

Прилагане на получените пигменти в глазури за керамични плочки

Със синтезираните от нас шпинелни пигменти бяха извършени полупромишлени изпитания в завод "Хан Омуртаг" АД, гр. Шумен. Пигментите бяха въведени в количество от 5% в бяла полутранспарентна глазура за облицовъчни стенни плочки, технология монопороза формат 25х40.

	3Н	SiO2	A12O3	CaO	MnO	Fe2O3
Во	12,3	50,2	32,50	0,22	0,30	0,83
FTAE74465		61,2	9,91	15,8	6,0	
FOAE8034		55,0	9,0	9,0	12,9	

Таблица 22. Химичен състав на бяла полутранспарентна глазура

Получиха се образци с различен нюанс на цвета и ефект в зависимост от техният химичен състав. Съставите на плочките са дадени в Таблица 23., а цветовете са представени на Фиг. 35.

N⁰	Състав	Температура на синтез
C1	C1- ZnO.0,13 Fe ₂ O ₃ .1,14Al ₂ O ₃	900°C
1C	1C - ZnO.0,13 Fe ₂ O ₃ .1,14Al ₂ O ₃	1100°C
C2	C 2 - ZnO.0,25 Fe ₂ O ₃ 1,10Al ₂ O ₃	900°C
2C	2 C- ZnO.0,25 Fe ₂ O ₃ 1,10Al ₂ O ₃	1100°C
C3	C 3- ZnO.0,13 Cr ₂ O ₃ 1,14 Al ₂ O ₃	900°C
3C	3 C- ZnO.0,13 Cr ₂ O ₃ 1,14 Al ₂ O ₃	1100°C
C4	C 4- ZnO.0,25 Cr ₂ O ₃ .1,10 Al ₂ O ₃	900°C
4C	4C- ZnO.0,25 Cr ₂ O ₃ .1,10 Al ₂ O ₃	1100°C

Таблица 23. Състави С1÷4С

Видът на плочките, глазирани с глазури с добавени пигменти със състави C1÷4C е показан на Фиг. 35.

Фиг. 35. Цвят на плочки, глазирани със състави C1÷4C

ИЗВОДИ

Синтезирани са вилемитови и шпинелни керамични пигменти в разнообразна цветова гама – сини, зелени, розови, жълти, кафяви, виолетови и сиви чрез използване на метода на твърдофазно спичане и зол-гел технологията. Установено е, че пигментите синтезирани по метода на твърдофазно спичане са с по-интензивни цветови характеристики от тези, получени по зол-гел метода. Пигментите, синтезирани по зол-гел метода и въведени в глазура дават по-добро пастелно оцветяване.

ИЗВОДИ ПО ОТНОШЕНИЕ НА ВИЛЕМИТОВИТЕ ПИГМЕНТИ

Синтезирани са 36 състава с разлечни по цвят пигменти на основа вилемит с участието на Со, Ni, Mn и Fe като хромофорни елементи по метода на твърдофазно спичане и зол-гел технология.

1. Синтезирани са сини керамични пигменти на основа вилемит по метода на твърдофазно спичане от химически чисти суровини и е установено следното:

≻ Изследвано е влиянието на оцветяващите йони и тяхното количество върху образуването на основния минерал по твърдофазния синтез с участието на минерализатор;

➢ В системата CoO-ZnO-SiO₂ се получават сини на цвят керамични пигменти. С най-добри цветови характеристики е пигмента със състав 0,375CoO.1,625ZnO.SiO₂, синтезиран при 1000°С, (b*=-52,85);

➢ В системата NiO-ZnO-SiO₂ се получават зелени и синьо-зелени пигменти. С най-добри цветови характеристики е пигмента със състав 0,375 NiO.1,625ZnO.SiO₂, синтезиран при 1000°С, (b*=-17,54, a*=-12,4);

➢ В системата MnO-ZnO-SiO₂ се получават тъмнорозови и кафяви пигменти. С увеличаването на концентрацията на MnO количеството на червения цвят (+а*) първоначално расте, а след това намалява, най-голямо при пигмента със състав 0,375MnO.1,625ZnO.SiO₂, синтезиран при 1000°С (а*= +11,60);

➢ В системата FeO-ZnO-SiO₂ се получават пигменти с червено-кафяв цвят. С увеличаването на концентрацията на FeO количеството на червения цвят (+а*) намалява, най-голямо е при пигмента със състав 0,25FeO.1,75ZnO.SiO₂, синтезиран при 1000°С (а*= +25,68).

2. Синтезирани са керамични пигменти на основа вилемит по метода на твърдофазно спичане от отпадъчни суровини – пепел от оризови люспи (като източник на SiO₂) и е установено следното:

> Доказана е възможността за замяна на чистия силициев диоксид с такъв, получен от окислени оризови люспи;

≻ Доказана е възможността за синтезиране на вилемитови пигменти чрез замяна на ZnO с CoO и NiO: Zn_{2-x}Co_x SiO₄ и Ni_{2-x}Co_x SiO₄;

≻ При добавяне на Fe₂O₃ се синтезират едновременно минералите вилемит и желязно-цинков шпинел като преимуществено се получава Fe-Zn шпинел (ZnO.Fe₂O₃). При температура на синтез 1000°С преобладава шпинелната фаза, а цвета на пигментите е светлокафяв; Установени са оптималните параметри на процеса на синтез при всички изходни състави;

Установено е, че най-добри резултати са получени при добавяне на Со със състав 0,375CoO.1,625ZnO.SiO₂, синтезиран при 1000°С. В този случай става пълно заместване на Zn с Со в кристалната решетка на цинковия силикат, образува се вилемит-кобалтин като количеството на измерения син цвят в системата CIELab е $b^*=-41,24$. При този състав се наблюдават най-голяма наситеност на цвета и яркост (L*= 35,68);

≻ Резултатите от РФА показват, че при добавяне на NiO в изходната шихта става по-слабо заместване на Zn с Ni в решетката на вилемита и количеството синтезиран вилемит е по-малко. Получените пигменти са със зелен цвят.

3. Синтезирани са вилемитови пигменти по зол- гел метода

≻ Синтезирани са керамични пигменти на основа вилемит с участието на Со, Ni и Fe като хромофорни елементи по зол-гел метода;

≻ При пигментите с хромофор Со, количеството на синия цвят (-b*) е найголямо при пигмента със състав 0,375CoO.1,625ZnO.SiO₂, синтезиран при 1100°C (b*= -45,44);

≻ При пигментите с хромофор Ni, с най-добри цветови характеристики е пигмента със състав 0,375 NiO.1,625ZnO.SiO, синтезиран при 1100°С. Цветът на пигмента е синьо-зелен (а*= -14,4; b*= -5,11);

≻ При пигментите с хромофор Fe, количеството на червения цвят (+а*) е най-голямо при пигмента със състав 0,375FeO.1,625ZnO.SiO₂, синтезиран при 1100°C (а*= 22,67).

ИЗВОДИ ПО ОТНОШЕНИЕ НА ШПИНЕЛНИТЕ ПИГМЕНТИ

Синтезирани са 53 състава на нормални шпинелни пигменти от типа AB_2O_4 , където $A^{2+}=Zn^{2+}$, Co^{2+} , Cu^{2+} , Mn^{2+} , Cr^{2+} , Fe^{2+} , а $B^{3+}=Al^{3+}$, Cr^{3+} , Fe^{3+} . При синтеза на шпинелни пигменти сме приложили метода на твърдофазно спичане като сме използвали химически чисти и отпадъчни суровини.

1. Синтезирани са шпинелни пигменти от химически чисти суровини чрез твърдофазен метод на синтез и е установено следното:

≻ Изследвано е влиянието на хромофорните елементи Fe, Cr, Mn, Cu и Co, влиянието на тяхното количество върху образуването на основния минерал – шпинел и цвета на пигментите;

≻ Цветът на шпинелните пигменти с хромофор Co²⁺, получени от чисти суровини чрез твърдофазов метод е син като с увеличаване на температурата на изпичане се наблюдава намаляване на светлотата L*. Количеството на синия цвят (b*) е най-голямо при пигмента със състав 0,1CoO.0,9ZnO.Al₂O₃ синтезиран при 1100°C (b*= -13.8);

≻ Резултатите от РФА показват, че основната фаза в повечето случаи е шпинела гаанит и е синтезирана още при 1000°С като се наблюдават и незначителни рефлекси на съответния оксид. С повишаване на температурата на синтез се забелязва тенденция за увеличаване интензитета на пиковете на основната фаза за сметка на намаляването на интензитета на пиковете на вторичната допълнителна фаза;

> За определяне цветовите характеристики на синтезираните пигменти е приложен спектрофотометричен метод в производствени условия.

2. Синтезирани са шпинелни пигменти от отпадъчни суровиникатализатор от "ЛУКОЙЛ Нефтохим Бургас" АД чрез прилагане на твърдофазен синтез и е установено следното:

> Установено е, че отпадните катализатори могат успешно да се оползотворяват в производството на фасадна керамика, специална керамика, керамични пигменти и други материали;

> Определен е оксидния състав на отпадъчния Со-Мо катализатор. Проведени са експерименти по оползотворяването на отпадъчен Со-Мо катализатор в шпинелни керамични пигменти;

> Уточнени са основните състави за синтез на пигментите от отпадни катализатори и са избрани оптималните състави А и В за синтез. Определени са оптималните параметри за синтез на шпинелните пигменти: количество на отпадъка в пигмента, температура на изпичане и задръжка при максималната температура, вид и количество на минерализатора;

≻ Изследвани са свойствата на получените пигменти чрез рентгенофазов анализ, инфрачервена спектроскопия, електронна микроскопия, измерване на цвета и др. Най-добър син пигмент е получен при състав на проба В, изпечен при 1100°С, при което стойността на показателя b*= -25,0. Този резултат е по-добър от резултата за пигментите, получени от чисти суровини.

НАУЧНИ И НАУЧНО-ПРИЛОЖНИ ПРИНОСИ

1. Въз основа на кристалохимичните критерии е направен анализ на структурното поведение на хромофорните елементи в кристалната решетка на вилемита и е установено, че Co²⁺, Ni²⁺ и Mn²⁺ се включват като твърди разтвори на заместване на основата на изовалентен изоморфизъм. В тези случаи са изпълнени всички условия за изовалентен изоморфизъм (разликите в йонните радиуси между Zn²⁺ и съответните хромофорни йони са съответно $\Delta = 1,7\%, 6,8\%$ и 11,9%).

2. При пигментите с участието на Fe³⁺ отсъства наличието на изискваните условия за изовалентно заместване по степен на окисление и размер на йонните радиуси (разликата в йонните радиуси между Zn²⁺ и Fe³⁺ е Δ = 16,9%). В случая с железните пигменти ЕПР анализа потвърждава неговата степен на окисление – Fe³⁺, а Мьосбауеровия спектър показва, че той е под формата на ZnFe₂O₄. Този вид пигменти могат да бъдат отнесени към групата на капсулираните (включени) пигменти.

3. След проведените полупромишлени изпитания е доказано, че синтезираните вилемитови и шпинелни пигменти могат успешно да се прилагат в глазури за облицовъчни плочки и санитарна керамика. Пигментите не предизвикват поява на дефекти в глазурата. Приложените в промишлени условия състави могат да бъдат полезен модел за нашата страна и да бъдат въведени в реално производство.

СПИСЪК НА НАУЧНИТЕ ПУБЛИКАЦИИ

А. Научни публикации

1. **Ibreva Ts.**, Ts. Dimitrov, I. Markovska, R. Titorenkova, I. Markovska, E Tacheva, O. Petrov, Synthesis and characterization of willemite ceramic pigments in the system xCoO.(2-x)ZnO. SiO₂, *Bulgarian Chemical Communications*, 2018, v.50 Special Issue-F, p. 31-37 (**Imp. Factor: 0.242**)

2. Ts. I. Dimitrov, **Ts.H. Ibreva**, A.V. Zaichuk, I.G. Markovska, A.A. Amelina, E.V. Karasik, Synthesis and study of low-temperature ferrum – willemite ceramic pigments, *Voprosy khimii i khimicheskoi tekhnologii*, 2019, No. 6, p. 69-73 (Imp. Factor: 0.32, SCOPUS cited, SJR - 0.350)

3. Dimitrov T.I., **Ibreva T.H**, Markovska I.G., Synthesis and Investigation of Ceramic Pigments in the System MnO.ZnO.SiO₂, *Glass and Ceramics*, 2019, v. 76, №5-6, p. 216–218, **(Imp. Factor - 0.626, SCOPUS cited)**

4. Markovska I., Ts. Dimitrov, **Ts. Ibreva**, Synthesis and characterization of willemite ceramic pigments *suitable* for the *ceramic industry by* utilization of Rice Husk Ash, *Journal of Chemical, Biological and Physical Sciences*, JCBPS, 2019, v. 9, №4, p. 219-232

5. Димитров Ц., И. Марковска, **Цв. Ибрева**, Синтез и исследование кобальт-виллемитовых керамических пигментов, *Евразийский союз ученых*, *Ежемесячный научный журнал*, 2018, №5, 50, 2 часть, Химические науки, с. 55-58

Б. Научни конференции

6. Димитров Ц., Цв. Ибрева, А. Зайчук, И. Марковска, Е. Карасик, Синтез и исследование *железо* - виллемитовых керамических пигментов, Международная научно-техническая конференция "Физико-химические проблемы технологии тугоплавких неметаллических и силикатных материалов", 10-11 октября 2018г, Днепропетровск, Украйна, 2018г., Тезисы докладов, с. 26-27

7. **Ibreva Ts.**, Ts. Dimitrov, I. Markovska, Synthesis and study of Ni-doped willemite ceramic pigments, Reports Awarded with "Best Paper" Crystal Prize, 57th Annual scientific conference of University of Ruse and Union of Scientists "New Industries, Digital Economy, Society - Projections of the Future", Ruse, 2018, p. 173-178

8. **Ibreva Ts.**, Ts. Dimitrov, I. Markovska, Synthesis and study of Co-doped willemite ceramic pigments with Ni, Mn and Fe, Proceedings Univercity of Ruse "Angel Kanchev", vol. 57, book 10.3, 2018, p. 24-29

В. Издаден полезен модел

9. "Син керамичен пигмент от отпадни Со-Мо катализатори", с изобретатели: Ирена Марковска, Цветан Димитров, Фила Йовкова, **Цветалина Ибрева**, Хранимир Димов, 2020 г. № 3820 U1, С 04 В 41/00 (2006.01), (51) Int.Cl.

ЗАБЕЛЯЗАНИ ЦИТАТИ НА ПУБЛИКАЦИИ ОТ ДИСЕРТАЦИЯТА

№ 1 Ibreva Ts., Ts. Dimitrov, I. Markovska, R. Titorenkova, I. Markovska, E Tacheva, O. Petrov, Synthesis and characterization of willemite ceramic pigments in the system xCoO.(2-x)ZnO. SiO₂, *Bulgarian Chemical Communications*, 2018, v.50 Special Issue-F, p. 31-37

ЦИТИРАНА Е В:

1. Atanassova, L. Nenova, M. Benkova, Ts. Simeonova, M. Harizanova, M. Karadjov, *Journal of Environmental Protection and Ecology*, 2021, v. 22, №4, 1416-1430

2. Mun, Cheong Wei, Loh Zhi Wei, and Mohd Hafiz Mohd Zaid. "The characteristics on structural and optical of Co₃O₄ incorporated Zn2SiO4 for phosphor approaches, *Journal of Molecular Structure*, 2022, v. 1248, Article 131474

№ 2 Ts. I. Dimitrov, Ts.H. Ibreva, A.V. Zaichuk, I.G. Markovska, A.A. Amelina, E.V. Karasik, Synthesis and study of low-temperature ferrum – willemite ceramic pigments, *Voprosy khimii i khimicheskoi tekhnologii*, 2019, No. 6, p. 69-73

ЦИТИРАНА Е В:

1. Atanassova, L. Nenova, M. Benkova, Ts. Simeonova, M. Harizanova, M. karadjov, *Journal of Environmental Protection and Ecology, 2021, v. 22, №4,* 1416-1430

№ 3 Dimitrov T.I., Ibreva T.H, Markovska I.G., Synthesis and Investigation of Ceramic Pigments in the System MnO.ZnO.SiO₂, 2019, Volume 76, Issue 5–6, pp 216–218

ЦИТИРАНА Е В:

1. Радишевская Н., et al., Синтез неорганических кобальтсодержащих пигментов шпинельного типа методом самораспространяющегося высокотемпературного синтеза, Известия высших учебных заведений, Порошковая металлургия и функциональные покрытия, 2020, 2, 21-28

2. Radishevskaya N., et al., Synthesis of Inorganic Cobalt-Containing Spinel-Type Pigments by Self-Propagating Synthesis, *Russian Journal of Non-Ferrous Metals*, 2020, 61, 6, 680-685

3. Radishevskaya N. I., A. Yu Nazarova and O. V. Lvov, Inorganic Mn-Based Core–Shell Pigments by Solution-Combustion Synthesis with Citric Acid as a Fuel, *International Journal of Self-Propagating High-Temperature Synthesis*, 2021, 30, 3, 139-144

4. Atanassova, L. Nenova, M. Benkova, Ts. Simeonova, M. Harizanova, M. karadjov, *Journal of Environmental Protection and Ecology*, 2021, v. 22, №4, 1416-1430

№ 4 Markovska I., Ts. Dimitrov, Ts. Ibreva, Synthesis and characterization of willemite ceramic pigments *suitable* for the *ceramic industry by* utilization of Rice Husk Ash, *Journal of Chemical, Biological and Physical Sciences*, JCBPS, 2019, v. 9, №4, p. 229-242

ЦИТИРАНА Е В:

1. Mun, Cheong Wei, Loh Zhi Wei, and Mohd Hafiz Mohd Zaid. "The characteristics on structural and optical of Co₃O₄ incorporated Zn₂SiO₄ for phosphor approaches, *Journal of Molecular Structure, 2022, v.* 1248, Article 131474